Enhancement of ELM by Clustering Discrimination Manifold Regularization and Multiobjective FOA for Semisupervised Classification
نویسندگان
چکیده
A novel semisupervised extreme learning machine (ELM) with clustering discrimination manifold regularization (CDMR) framework named CDMR-ELM is proposed for semisupervised classification. By using unsupervised fuzzy clustering method, CDMR framework integrates clustering discrimination of both labeled and unlabeled data with twinning constraints regularization. Aiming at further improving the classification accuracy and efficiency, a new multiobjective fruit fly optimization algorithm (MOFOA) is developed to optimize crucial parameters of CDME-ELM. The proposed MOFOA is implemented with two objectives: simultaneously minimizing the number of hidden nodes and mean square error (MSE). The results of experiments on actual datasets show that the proposed semisupervised classifier can obtain better accuracy and efficiency with relatively few hidden nodes compared with other state-of-the-art classifiers.
منابع مشابه
Semi-supervised classification learning by discrimination-aware manifold regularization
Manifold regularization (MR) provides a powerful framework for semi-supervised classification (SSC) using both the labeled and unlabeled data. It first constructs a single Laplacian graph over the whole dataset for representing the manifold structure, and then enforces the smoothness constraint over such graph by a Laplacian regularizer in learning. However, the smoothness over such a single La...
متن کاملSimultaneous clustering and classification over cluster structure representation
Two main tasks in pattern recognition area are clustering and classification. Owing to their different goals, traditionally these two tasks are treated separately. However, when label information is available, such separate treatment can not fully explore data information. First, classification is not favored by the data cluster structure. Second, clustering is not guided by valuable label info...
متن کاملOn Manifold Regularization
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning algorithms and standard methods including Support Vector Machines and Regularized Least Squares can b...
متن کاملManifoldBoost: Stagewise Function Approximation for Fully-, Semi- and Un-supervised Learning
We introduce a boosting framework to solve a classification problem with added manifold and ambient regularization costs. It allows for a natural extension of boosting into both semisupervised problems and unsupervised problems. The augmented cost is minimized in a greedy, stagewise functional minimization procedure as in GradientBoost. Our method provides insights into generalization issues in...
متن کاملHessian semi-supervised extreme learning machine
Extreme learning machine (ELM) has emerged as an efficient and effective learning algorithm for classification and regression tasks. Most of the existing research on the ELMs mainly focus on supervised learning. Recently, researchers have extended ELMs for semi-supervised learning, in which they exploit both the labeled and unlabeled data in order to enhance the learning performances. They have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015